In this post together we delve into Advanced XAI, XAI characteristics, Categories and Python libraries 📚
Characteristics of XAI:
Transparency
Justification
Informativeness
Reliability
Categories of XAI:
Feature attribution: Determine Feature Importance
Instance based: Determine Subset of features that guarantee a prediction
Graph Convolution based: Interpret Model using subgraphs
Self explaining: Develop Model that are explainable by Design
Uncertainty Estimation: Quantify the reliability of a prediction
Advanced XAI methods:
Diving into some examples in the categories and also other types:
Counterfactual: alternative scenarios that could have led to a different AI decision.
Human-Readable Rule Extraction: extract human-readable rules from complex models
Attention Mechanisms: highlight the important features or regions in input data that influenced an AI decision.
NLP techniques: can generate explanations in human-readable language to provide intuitive insights
Bayesian Networks: enable understanding of causal relationships within AI models.
Model Confidence: conveying model confidence and uncertainty in predictions.
Adversarial Explanation: testing AI models with intentionally modified inputs to reveal vulnerabilities or biases.
Transfer Learning: widely used for improving AI performance, can also enhance explainability.
Interactive Explanations: allow users to actively engage with AI systems and explore decision pathways.
Integrating Human Feedback Loops: by incorporating iterative feedback loops from human users.
Here are 60 Python Libraries for AI Explainability and Model Interpretability:
SHAP - SHAP Documentation
LIME - LIME Documentation
ELI5 - ELI5 Documentation
interpret - interpret Documentation
Captum - Captum Documentation
Skater - https://github.com/GapData/skater
Fairlearn - Fairlearn Documentation
Fairness Indicators - https://github.com/tensorflow/fairness-indicators, https://notebook.community/tensorflow/fairness-indicators/fairness_indicators/documentation/examples/Fairness_Indicators_Example_Colab
Yellowbrick - https://www.scikit-yb.org/en/latest/
PyCEbox - PyCEbox Documentation
Anchor - Anchor Documentation
SHAPash - SHAPash Documentation
DiCE - DiCE Documentation
Aequitas - https://github.com/dssg/aequitas
CleverHans - CleverHans Documentation
PrivacyRaven - PrivacyRaven Documentation
interpretML - interpretML Documentation
PDPbox - PDPbox Documentation
Fairness - Fairness Documentation
FAT Forensics - FAT Forensics Documentation
What-If Tool - https://pair-code.github.io/what-if-tool/
certifai - certifai Documentation
Explanatory Model Analysis - https://ema.drwhy.ai/
XAI - XAI Documentation
Fairness Comparison - Fairness Comparison Documentation
AI Explainability 360 - https://aix360.readthedocs.io/en/latest/
BlackBoxAuditing - BlackBoxAuditing Documentation
Deap - Deap Documentation
TCAV - TCAV Documentation
Grad-CAM - Grad-CAM Documentation
AIX360 - AIX360 Documentation
fairkit-learn - fairkit-learn Documentation
Adversarial Robustness Toolbox (ART) - ART Documentation
Treeinterpreter - Treeinterpreter Documentation
TensorFlow Explain - https://www.tensorflow.org/guide -- https://tf-explain.readthedocs.io/en/latest/usage.html
Concept Activation Vectors - Concept Activation Vectors Documentation
Holoclean - Holoclean Documentation
Saabas - https://cran.r-project.org/web/packages/tree.interpreter/vignettes/MDI.html
RelEx - RelEx Documentation
iNNvestigate - iNNvestigate Documentation
Profweight - Profweight Documentation
XDeep - XDeep Documentation
DeepLIFT - DeepLIFT Documentation
L2X - L2X Documentation
Fiddler AI - Fiddler AI Documentation
TrustyAI - TrustyAI Documentation
RAI - RAI Documentation
LimeTabular - LimeTabular Documentation
Gamut - Gamut Documentation
cxplain - cxplain Documentation
AnchorTabular - AnchorTabular Documentation
H2O-3 Explainability - https://docs.h2o.ai/h2o/latest-stable/h2o-docs/explain.html
Alibi Detect - https://github.com/SeldonIO/alibi-detect
WeightWatcher - WeightWatcher Documentation
These resources provide comprehensive guides and examples for implementing and understanding the respective tools and frameworks.
Let's build a future where humans and AI work together to achieve extraordinary things!
Let's keep the conversation going!
What are your thoughts on the limitations of AI for struggling companies? Share your experiences and ideas for successful AI adoption.
Contact us(info@drpinnacle.com) today to learn more about how we can help you.
Comments